

MoDL-QSM was also developed by Prof. Hongjiang Wei's group. It incorporates the physical Susceptibility Tensor model into convolutional neural networks. MoDL-QSM reconstructs high quality STI component χ_3 3 map and the field induced by χ_1 3 and χ_2 3 terms from the tissue phase.

MoDL-QSM: Model-based Deep Learning for Quantitative Susceptibility Mapping

Our contributions:

- > STI (Susceptibility tensor imaging) model-based deep learning;
- > Provide a more realistic susceptibility reference for single-orientation QSM;
- \triangleright Simultaneously predict χ_{33} and the field induced by χ_{13} and χ_{23} terms;

I inks:

download link: https://github.com/AMRI-Lab/MoDL-QSM publication links: https://arxiv.org/abs/2101.08413

Feng et al. NIMG, under review

The advantages of MoDL-QSM include: STI model based, preserve the susceptibility anisotropy, and simultaneously predict χ _33 and the field induced by χ _13 and χ _23 terms. MoDL-QSM provide a more realistic reference for single-orientation QSM. The source codes and trained networks ready for testing can be download at: https://github.com/AMRI-Lab/MoDL-QSM. The paper was submitted to NIMG and can be found at arXiv: https://arxiv.org/abs/2101.08413