

- This tool is a set of three MRI susceptibility calculation methods written in both MATLAB and Python for easy implementation as the last step in your QSM processing pipelines.
- The methods include TKD, k-space inversion with Tikhonov regularisation also known as Direct Tikhonov, and iterative fitting with Tikhonov regularisation.
- For the iterative Tikhonov regularisation method, explained in more detail in Anita Karsa's paper on Optimised QSM for the Head and Neck, the solution is found by solving this least-squares minimisation problem with a Tikhonov regularisation term, using a conjugate gradient method. It is very quick and accurate for many applications including neuroimaging and head-and-neck imaging.

How to access:	Example use (MATLAB):	
 Request download as either: <u>Free Academic licence</u>: 24 month term <u>Other use licence</u>: Negotiable 	<pre>Parameters.FieldMap = FieldMap; Parameters.Noise = NoiseMap; Parameters.Mask = Mask; Parameters.Resolution = [1 1 1]; Parameters.B0direction = [0 0 1]; Parameters.Alpha = 0.05; QSM = iterTik(Parameters);</pre>	From N_std output of Fit_ppm_complex.m or Fit_ppm_complex_TE.r from MEDI Toolbox
Download: <u>htt</u> [1]: Shmueli, K et al. (2009). Magnetic susceptibility ma Medicine vol 62 issue 6, 1510-1522 [2]: Karsa, A., Punwani, S., & Shmueli, K. (2020). An opt quantitative susceptibility mapping in the head-and-new [3]: Schweser, F et al. (2013). Toward online reconstruct Resonance in Medicine vol 69 issue 6, 1581-1593	ps://xip.uclb.com/product/mri_qsm_tko pping of brain tissue in vivo using MRI phase data, Magnetic imized and highly repeatable MRI acquisition and processing ck region. Magnetic Resonance in Medicine, 84(6), 3206-322 tion of quantitative susceptibility maps: superfast dipole inv	d c Resonance in g pipeline for 22 ersion, Magnetic

- To download this toolbox simply request a download and provide an academic email address for the academic licence, or we would be happy to negotiate a licence for non-academic or commercial use.
- An example use of the iterTik function in MATLAB is shown here, where the Noise input to the Parameter struct is obtained from one of the Fit_ppm_complex functions in the MEDI toolbox.
- You can download this tool at the link shown here.